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1. Introduction

The aim of this note is to propose an alternative to the classical convective outlet boundary condition heav-
ily used for wall-bounded laminar/turbulent flows.

Despite the huge improvements in computational power in the last few years, numerical simulations (DNS
or LES) of boundary layers are still expensive and any simulation may take many weeks of processing time to
achieve statistically stationary results. Hence, any methodology that reduces the computational time is wel-
come. Concerning the outflow boundary, many conditions can be applied, such as a streamwise periodicity
[11] or a zero-gradient condition on the velocity [6]. However, in most of the studies that deal with numerical
simulations of a turbulent flow, a convective condition is used as the exit boundary condition. This exit con-
dition is a solution to the linearised convective equation (Eq. (1)), where the convection velocity U c is chosen
to be either the maximum streamwise velocity [8], the mean streamwise velocity at this plane [4,7] or the local
velocity [2,5] and x is the streamwise direction:
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In the case of a boundary layer, however, the implementation of Eq. (1) can create a singularity in the shear
stress distribution. The shear stress error in the context of a fractional step algorithm [3] will lead to an over-
correction of the velocity field by the pressure, which will contaminate a large part of the computational do-
main because of the elliptic nature of the Poisson equation. Moreover, the effect of this singularity
contaminates an increased portion of the computation domain with decreasing Reynolds number. Fig. 1 rep-
resents the pressure field obtained for a laminar boundary layer developing over a flat plate obtained using the
outflow boundary condition (Eq. (1)), U c being the local velocity. The contamination, as made evident in the
non-uniform pressure contours in the figure, extends approximately one fifth of the way into the simulation
domain. The ‘‘polluted” pressure field clearly is wrong. The main consequence of having this kind of polluted
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Fig. 1. Non-dimensional pressure field for a laminar boundary layer developing over a flat plate obtained with the classical outlet
condition.
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zone is that the domain size is larger than it should be (with the concomitant increase in computational cost)
assuming that there is no impact farther upstream and that it is acceptable to ignore this region.

The linearised form of the Navier–Stokes equations (i.e. Eq. (1)) at the outlet implies that the first- and sec-
ond-order wall-normal derivatives are negligible. This may be true for some flows; however, it is demonstrated
below that in the case of laminar boundary layers this is not true. The velocities are small close to the wall;
however, they increase rapidly away from the wall. The magnitude of the wall-normal derivatives are, there-
fore, large, as can be observed in Fig. 2.

Fig. 2 demonstrates that the classical term ux
oux
ox is much larger in magnitude than other terms. Moreover,

for higher Reynolds numbers, the magnitude of these terms remain non-negligible (see Fig. 3). These results
clearly are in accordance with the boundary layer theory since the boundary layer equations directly imply
that all these terms are of the same order of magnitude [10].

Consider the following equations as boundary conditions:
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Order of magnitude of the different terms in the streamwise Navier–Stokes equation for a laminar boundary layer developing over
late at Reh ¼ 320.

Order of magnitude of different terms in the streamwise Navier–Stokes equation for a laminar boundary layer developing over a
te at Reh ¼ 700.
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This boundary condition takes into account the terms uy
oui
oy and m o2ui

oy2 , the importance of which has been under-
lined in Figs. 2 and 3.

The literature on exit boundary conditions used in CFD is large and issues and solutions are quite different
when dealing with compressible or incompressible flows; however, there have been attempts to develop bound-
ary conditions for compressible flows in the limit as the Mach number approaches zero. This is the case in [1]
where the authors performed a long wave asymptotic expansion of the Navier–Stokes equations. The resulting
eigensystems provide the decay rate and group velocity of the long wave disturbances in the far-field. An evo-
lution equation for the pressure in the far-field that can be used as a boundary condition could then be defined.
In the case of incompressible flow, the eigenvalues of the zeroth and first order eigensystems (providing the
decay rate and group velocity) of the incompressible viscous boundary layer equations were found to be
the same as the one obtained by the compressible Navier–Stokes equation at a vanishing Mach number, prov-
ing that the use of Eq. (2) is well-founded from a mathematical perspective.
Fig. 4. Non-dimensional pressure field for a laminar boundary layer developing over a flat plate obtained with the modified outlet
boundary condition, Eq. (2).
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Fig. 5. Similarity profiles of the wall-normal component of the velocity for a laminar boundary layer obtained with the classical (top) and
modified (bottom) outflow condition.



7080 G. Fournier et al. / Journal of Computational Physics 227 (2008) 7077–7082
Thus, the incompressible boundary layer equations themselves accommodate the perturbations at the out-
flow boundary. This is particularly interesting in the case of a Navier–Stokes solver based on the fractional
step method for which a boundary condition obtained in terms of an equation for the evolution of the pressure
is not well suited. On the other hand, the boundary layer equations can be easily implemented as boundary
conditions as they constitute evolution equations for the whole velocity vector.

2. Steady flow boundary layer

This new boundary condition was tested and validated for the flow developing along a flat plate at
Reh ¼ 320, based on the free-stream velocity and on the momentum thickness at the inlet plane. DNS in
two dimensions was performed on a finite-volume, staggered grid solver developed at the Center for Turbu-
lence Research [9]. Around 50,000 control volumes were used with stretching in the wall-normal direction such
that the mesh size in that direction varies from Dyþ ¼ 0:45 close to the wall to Dyþ ¼ 25 in the free flow region.
At the inlet, Blasius’ profiles were used in both the streamwise and wall-normal directions, a classical convec-
tive condition was used at the upper boundary and a no-slip condition was applied at the lower boundary to
simulate the flat plate. This case was considered because it is known to be extremely sensitive to the choice of
the outlet boundary condition. Finally, a reference case with exactly the same parameters except for the outlet
condition was also run. For this reference simulation, the convective velocity was chosen to be the local veloc-
ity at the exit plane, so that the two terms of this boundary condition, derived from (1), are exactly included in
the new condition (2). Note that several convective velocities were applied but as they were not as good as the
local velocity, the results obtained are not presented here.

The pressure field computed with the modified outflow condition is given in Fig. 4 and should be compared
to Fig. 1, obtained with the classical condition and plotted with the same intensity levels.

As expected, the singularity at the outlet plane vanishes and there is no polluted zone. Hence, use of this
modified outflow condition enables the whole domain and thus each grid point to be useful for physical flow
analysis. The superiority of this outflow condition over the more common convective condition is made evi-
dent by comparing the similarity profiles for the wall-normal velocity (Fig. 5). The profiles obtained from the
inlet (Rex = 245,000) to the outlet (Rex = 470,000) boundaries are all in accordance with Blasius’ theory
throughout the whole computational domain.
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Fig. 6. Streamwise evolution of the skin-friction coefficient as a function of Rex.
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Fig. 7. Streamwise evolution of the free-stream wall-normal velocity (bottom) as a function of Rex.
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The skin-friction coefficient as well as the free-stream wall-normal velocity are plotted as functions of Rex

and compared to the theoretical evolution predicted by Blasius’ theory (Figs. 6 and 7).
It is readily apparent from these figures that the modified outlet condition respects the Blasius solution,

while the skin-friction and the free-stream velocity obtained using the traditional convective outlet boundary
condition agree with the Blasius solution only up to Rex ’ 400; 000 and Rex ’ 360; 000, respectively.

3. Conclusion

A new outflow boundary condition for wall-bounded laminar flows was demonstrated to reproduce exactly
the Blasius solution over the full computational domain, contrary to those results obtained using the tradi-
tional convective outlet boundary condition. Given that the boundary layer equations represent a good
approximation to a large number of wall-bounded and free-shear flows, and that the eigensystem analysis
of [1] showed that they lead to the same estimation as the zero Mach number limit of the compressible equa-
tions, this condition should also be useful for other types of turbulent flows.
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